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Abstract Extra-gradient method and its modified versions are direct methods for
variational inequalities VI(�, F) that only need to use the value of function F in
the iterative processes. This property makes the type of extra-gradient methods very
practical for some variational inequalities arising from the real-world, in which the
function F usually does not have any explicit expression and only its value can be
observed and/or evaluated for given variable. Generally, such observation and/or
evaluation may be obtained via some costly experiments. Based on this view of point,
reducing the times of observing the value of function F in those methods is meaningful
in practice. In this paper, a new strategy for computing step size is proposed in general
extra-gradient method. With the new step size strategy, the general extra-gradient
method needs to cost a relatively minor amount of computation to obtain a new step
size, and can achieve the purpose of saving the amount of computing the value of F
in solving VI(�, F). Further, the convergence analysis of the new algorithm and the
properties related to the step size strategy are also discussed in this paper. Numerical
experiments are given and show that the amount of computing the value of function
F in solving VI(�, F) can be saved about 12–25% by the new general extra-gradient
method.
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1 Introduction

Consider the following variational inequality VI(�, F): Find u∗ ∈ � such that

(u − u∗)TF(u∗) ≥ 0, ∀ u ∈ �, (1.1)

where � is a closed convex subset of Rn, F : � �→ Rn is monotone, i.e., for all u, v ∈ Rn

(u − v)T(F(u) − F(v)) ≥ 0.

It is well known that variational inequality VI(�, F) includes nonlinear complemen-
tarity problems (when � = Rn+) and system of nonlinear equations (when � = Rn)
[2,3], and thus it has many important applications in the real world [1,4,9,18,23]. Until
now, a variety of methods for solving VI(�, F) have been proposed and investigated
[5–8,12–14,17,20]. Among them, extra-gradient method and its modified versions
[13,15,16] are direct methods for variational inequalities VI(�, F) that only need to
use the value of function F in the iterative processes. In order to easily understand
that, we first briefly describe the extra-gradient method and the general extra-gradient
method below.

Let β0 > 0 and uk be the kth approximate solution of VI(�, F), then the extra-gra-
dient method generates uk+1 via the following projection-type prediction-correction
process [13]:

Prediction: ū = P�[uk − βkF(uk)], (1.2)

Correction: uk+1 = P�[uk − βkF(ū)], (1.3)

where βk > 0 satisfies the following assumption

βk‖F(uk) − F(ū)‖ ≤ ν‖uk − ū‖, ν ∈ (0, 1). (1.4)

Based on the prediction-correction process (1.2)–(1.3), a general extra-gradient
method was proposed in paper He et al.[13] by just introducing a parameter α in
the correction process of the extra-gradient method. Thus, the general extra-gradient
method obtains the next uk+1 by the following prediction-correction process:

Prediction: ū = P�[uk − βkF(uk)], (1.5)

Correction: uk+1 := uk+1(α) = P�[uk − αβkF(ū)], (1.6)

where

α ∈
(

0,
2e(uk, βk)Td(uk, βk)

‖d(uk, βk)‖2

)

and

e(uk, βk) = uk − P�[uk − βkF(uk)] = uk − ū,

d(uk, βk) = uk − ū − βk(F(uk) − F(ū)).

Remark 1.1 It is clear that if ‖d(uk, βk)‖ = 0, then uk produced by general extra-
gradient method is a solution of (1.1). Thus, we can assume that ‖d(uk, βk)‖ 	= 0
throughout our paper.

As we know that direct methods are very useful for many practical variational inequal-
ities VI(�, F) in which we can just observe the value of F at a given variable and can
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not write down the explicit expression of the function F. However, such observation
may be obtained via some costly experiments. Based on this view of point, reducing
the times of observing the value of function F in those methods is meaningful in
practice.

In this paper, we are mainly concerned with the type of variational inequality
VI(�, F) in which the cost of observing or computing the value of function F is very
expensive, and the projection of a vector on � is relatively easy to be computed. In
this setting, the important task in improving the general extra-gradient method is to
reduce the amount of observing or computing the value of function F in solving this
kind of variational inequality. We will see that this task can be achieved in general
extra-gradient method by costing a relatively minor amount of computation used for
obtaining projections of some vectors on �. It is clear that the additional computation
is worthy to cost in those practical problems.

In order to obtain the more efficient and practical algorithm for this kind of varia-
tional inequality, let

�(α) = ‖uk − u∗‖2 − ‖uk+1(α) − u∗‖2, (1.7)

�(α) = ‖uk+1(α) − uk‖2 + 2αβk(uk+1(α) − ū)TF(ū), (1.8)

�(α) = 2αe(uk, βk)Td(uk, βk) − α2‖d(uk, βk)‖2, (1.9)

where u∗ ∈ � is a solution of problem (1.1).
In the next section, we study some properties of �(α) and show that

�(α) ≥ �(α) ≥ �(α). (1.10)

Following the inequalities (1.10), we will develop an improved general extra-gradient
method for problem (1.1) and provide the convergence analysis of the new method.
In Sect. 3, examples and the computational results are presented. Conclusions are
presented in Sect. 4.

2 The improved general extra-gradient method

In this section, we first establish the inequalities (1.10) which is a little modification
of the results of Theorem 2 in paper He et al.[13] and can be proved similarly. Fol-
lowing that, an improved algorithm for problem (1.1) is defined. Finally, we study the
properties of function �(α).

We first note that ū = P�[uk − βkF(uk)] ∈ �, it follows from (1.1) that

βkF(u∗)T(ū − u∗) ≥ 0. (2.1)

Under the assumption that F is monotone, we have

(βkF(ū) − βkF(u∗))T(ū − u∗) ≥ 0. (2.2)

Adding (2.1) and (2.2), we get

(uk − u∗)TF(ū) ≥ (uk − ū)TF(ū) (2.3)

(2.3) is a basic inequality which will be applied in the following proposition.
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Proposition 2.1 Let �(α), �(α) and �(α) be defined by (1.7)–(1.9), respectively, and
F be monotone. We have

�(α) ≥ �(α) ≥ �(α), (2.4)

where α ≥ 0.

Proof Since

‖P�(v) − u‖2 ≤ ‖v − u‖2 − ‖v − P�(v)‖2, ∀v ∈ Rn, u ∈ �,

we have

‖uk+1(α) − u∗‖2 ≤ ‖uk − αβkF(ū) − u∗‖2 − ‖uk − αβkF(ū) − uk+1(α)‖2.

It follows that

�(α) ≥ ‖uk − u∗‖2 − ‖uk − αβkF(ū) − u∗‖2 + ‖uk − uk+1(α) − αβkF(ū)‖2.

By using (2.3) and a simple manipulation, we obtain

�(α) ≥ ‖uk − uk+1(α)‖2 + 2αβk(uk+1(α) − ū)TF(ū) = �(α). (2.5)

Thus, we have proven the first part of the proposition.

Note that the �(α) can be rewritten as

�(α) = ‖uk − uk+1(α)‖2 + 2αβke(uk, βk)TF(ū) − 2αβk(uk − uk+1(α))TF(ū).

Using βkF(ū) = d(uk, βk) − [e(uk, βk) − βkF(uk)], it follows that

�(α) = 2αβke(uk, βk)TF(ū) + 2α(uk − uk+1(α))T(e(uk, βk) − βkF(uk))

−α2‖d(uk, βk)‖2 + ‖(uk − uk+1(α)) − αd(uk, βk)‖2

= 2αe(uk, βk)Td(uk, βk) − α2‖d(uk, βk)‖2

+‖(uk − uk+1(α)) − αd(uk, βk)‖2

+ 2α(uk − uk+1(α) − e(uk, βk))T(e(uk, βk) − βkF(uk))

= �(α) + ‖(uk − uk+1(α)) − αd(uk, βk)‖2

+ 2α(uk − uk+1(α) − e(uk, βk))T(e(uk, βk) − βkF(uk)). (2.6)

Note that

uk − uk+1(α) − e(uk, βk) = P�[uk − βkF(uk)] − uk+1(α).

Setting v := uk − βkF(uk) and u := uk+1(α) in the following basic inequality of
projection mapping:

(v − P�(v))T(P�(v) − u) ≥ 0, ∀v ∈ Rn, ∀ u ∈ � (2.7)

we get

(e(uk, βk) − βkF(uk))T(P�[uk − βkF(uk)] − uk+1(α)) ≥ 0

and therefore have

(uk − uk+1(α) − e(uk, βk))T(e(uk, βk) − βkF(uk)) ≥ 0. (2.8)
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Substituting (2.8) into (2.6), it follows that

�(α) ≥ �(α). (2.9)

Following (2.5) and (2.9), the proof is complete. 
�

Note that �(α) is a quadratic function of α, it attains its maximum at

α∗
k = e(uk, βk)Td(uk, βk)

‖d(uk, βk)‖2
. (2.10)

Based on the �(α) ≥ �(α) (see [13], Theorems 2 and 3 with γ = 1), we have the
following convergence results for the general extra-gradient method:

�(α∗
k) ≥ �(α∗

k)

and

�(α∗
k) ≥ (1 − ν)

2
‖e(uk, βk)‖2. (2.11)

Similar to He et al. [13] by maximizing �(α) to obtain a proper step size in each iter-
ation of general extra-gradient method , we can improve the general extra-gradient
method by replacing the step size α∗

k used in the original extra-gradient method with
a refined step size computed by maximizing �(α).

Now, for the same kth approximate solution uk, let

α∗
2(k) = arg max

α
{�(α)|α ≥ 0} (2.12)

and

α∗
1(k) = arg max

α
{�(α)|α ≥ 0}.

In order to make α∗
1(k) be obtained easily, we approximately compute α∗

1(k) by solving
the following simple optimization problem.

α∗
1(k) = arg max

α
{�(α)|0 ≤ α ≤ m1α

∗
2(k)}, (2.13)

where m1 ≥ 1.
Based on the assumption of ‖d(uk, βk)‖ 	= 0 and (2.10), it is clear that α∗

1(k) and
α∗

2(k) can be obtained by (2.13) and (2.12), respectively.

Remark 2.2 It is worth mentioning that when the value of F is not easy to be obtained
or observed and the projection of a vector on � can be computed relatively easily,
such as in some practical application problems, the main amount of computation
of approximately finding the point α∗

1(k) (at which the maximum value of �(α) on
[0, m1α

∗
2(k)] is attained) is to obtain or observe the value of function F at ū. Note

that the value of F at ū will be needed again in the correction process of the general
extra-gradient method. Moreover, for a given α, we can obtain the associated value of
�(α) by mainly computing the projection of uk − αβkF(ū) on �. Thus, if we use α∗

1(k)

instead of α∗
2(k) at each prediction-correction process of the general extra-gradient

method, we need not observe or compute additional value of function F, just cost a
relatively minor amount of computation for obtaining projections of some vectors on
� during computing the approximate value of α∗

1(k).
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Based on the proposition 2.1, the definition of α∗
1(k) and α∗

2(k), and the inequality
(2.11), the following convergence results can be proved easily.

Proposition 2.2 Let α∗
1(k) and α∗

2(k) be defined by (2.13) and (2.12), respectively, F be
monotone, then we have.

(1) ‖uk − u∗‖2 − ‖uk+1(α∗
1(k)) − u∗‖2 ≥ �(α∗

1(k)),

(2) ‖uk − u∗‖2 − ‖uk+1(α∗
2(k)) − u∗‖2 ≥ �(α∗

2(k)),

(3) �(α∗
1(k)) ≥ �(α∗

2(k)) ≥ (1−ν)
2 ‖e(uk, βk)‖2.

Remark 2.3 In a sense, α∗
2(k) is the original optimal step size used in the general

extra-gradient method. According to proposition 2.2, α∗
1(k) defined by (2.13) can be

taken as the more proper step size instead of α∗
2(k) and thus an improved general

extra-gradient method may be obtained.

Following the proposition 2.2, we now show that the sequence {uk} obtained from
(1.5) and (1.6) with α = α∗

1(k) converges to a solution of the variational inequality
(1.1). For this purpose, we need the following results, which can be found in Peng and
Fukushima [19].

Lemma 2.1 For all u ∈ Rn and β̄ ≥ β > 0, it holds that

‖e(u, β̄)‖ ≥ ‖e(u, β)‖
and

‖e(u, β̄)‖
β̄

≤ ‖e(u, β)‖
β

.

By using the technique of He [10], we have

Theorem 2.1 Let the sequence {uk} be generated by (1.5) and (1.6) with α = α∗
1(k),

then {uk} converges to a solution of (1.1).

Proof Because the sequence {uk} generated by (1.5) and (1.6) with the conclusions
of Proposition 2.2 is bounded and the mapping F is continuous, it is possible to prove
that while ‖e(uk, βk)‖ ≥ ε > 0, there is a βmin > 0 such that, for all k,

βk ≥ βmin

and the inequality (1.4) holds [11].

Now, let û be a solution of (1.1). From Proposition 2.2, we get

‖uk+1 − û‖2 ≤ ‖uk − û‖2 − c0‖e(uk, βk)‖2, (2.14)

where c0 = (1 − ν)/2, and thus we have that the sequence {uk} is bounded and

∞∑
k=0

c0‖e(uk, βk)‖2 ≤ ‖u0 − û‖2

and it follows from Lemma 2.1 that

lim
k→∞

e(uk, βmin) = 0.
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Further, since the sequence {uk} is bounded, let ũ∗ be a cluster point of {uk} and the
subsequence {ukj} converges to ũ∗. Because e(u, βmin) is continuous, we have

e(ũ∗, βmin) = lim
j→∞ e(ukj , βmin) = 0

and thus ũ∗ is a solution of (1.1). In the following, we prove that the sequence {uk}
has exactly one cluster point. Assume that ũ is another cluster point and denote

δ = ‖ũ − ũ∗‖ > 0.

Because ũ∗ is a cluster point of sequence {uk}, there is a k0 > 0 such that

‖uk0 − ũ∗‖ ≤ δ/2.

On other hand, since ũ∗ is a solution of (1.1), it follows from Proposition 2.2 that

‖uk − ũ∗‖ ≤ ‖uk0 − ũ∗‖, ∀ k ≥ k0.

And thus, we have

‖uk − ũ‖ ≥ ‖ũ − ũ∗‖ − ‖uk − ũ∗‖ ≥ δ/2, ∀ k ≥ k0.

This contradicts the assumption, thus the sequence uk converges to a solution ũ∗ of
(1.1). 
�

Before we present the improved extra-gradient method, we first briefly describe
the general extra-gradient method [13] below.

Algorithm 1 The general extra-gradient method

Step 1 Initialization:
pLet β0 > 0, ε > 0, 0 < µ < ν < 1, 0 < γ < 2, u0 ∈ � and set k := 0.

Step 2 Prediction:
ū := P�[uk − βkF(uk)].

Step 3 Verifying convergence:
Let e(uk, βk) = uk − ū. If ‖e(uk, βk)‖ < ε then stop, else go to Step 4.

Step 4 Modifying βk and computing βk+1:
If rk := βk‖F(uk) − F(ū)‖/‖uk − ū‖ ≤ ν, then

βk+1 = βk.
Else

While rk > ν, do
βk := 3

4βk × min{1, ν/rk},
ū := P�[uk − βkuk],
rk := βk‖F(uk) − F(ū)‖/‖uk − ū‖.

End While
βk+1 = βk.

End If
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Step 5 Searching step size α∗
k :

Solve the following optimization problem
α∗

k = arg max
α

{�(α) | α ≥ 0},
where �(α) is defined by (1.9).

Step 6 Extending the step size:
αk = γα∗

k.

Step 7 Correction:
uk+1 = P�[uk − αkβkF(ū)].

Step 8 Adjusting βk+1:
If rk ≤ µ

βk+1 := βk+1ν/rk.
End If
k := k + 1, go to Step 2. 
�

Based on Propositions 2.1 and 2.2, we are now ready to present the improved general
extra-gradient algorithms for (1.1). As we have known that the general extra-gradi-
ent method [13] was introduced by choosing a proper step size α in each iteration
of extra-gradient method. And the proper step size α can be obtained by initially
obtaining α∗

k by maximizing �(α) and then extending α∗
k according to the fact that

�(α) is a quadratic function with respect to α. This is achieved in the Steps 5 and
6 of the Algorithm 1, respectively. Similarly, the Proposition 2.2 motivates us that
we can improve the general extra-gradient method by choosing a more proper step
size α based on finding α∗

1(k) instead of α∗
2(k) in the Step 5 of Algorithm 1 and

correspondingly extending the step size by solving the following subproblem:

αk = max
α

{α∗
1(k) ≤ α ≤ m2α

∗
1(k) | �(α) ≥ ρ�(α∗

1(k))}, (2.15)

where ρ ∈ (0, 1) but closes to 0 and m2 ≥ 2.
It is clear that the αk can be obtained. And the main work of solving the problem
(2.15), as mentioned in Remark 2.2, is to obtain the projections of some vectors during
computing the value of �(α), and this is a relatively minor amount of computation
compared with the cost of observing the value of function F under the assumptions
above.

Following the studies above, we now briefly describe the new algorithm below and
call the new method the improved general extra-gradient method.

Algorithm 2 The improved general extra-gradient method

Step 1 Initialization:
Let β0 > 0, ε > 0, 0 < µ < ν < 1, 0 < ρ < 1, m1 ≥ 1, m2 ≥ 2, u0 ∈ � and
set k := 0.
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Step 2 Prediction:
ū := P�[uk − βkF(uk)].

Step 3 Verifying convergence:
Let e(uk, βk) = uk − ū. If ‖e(uk, βk)‖ < ε then stop, else go to Step 4.

Step 4 Modifying βk and computing βk+1:
If rk := βk‖F(uk) − F(ū)‖/‖uk − ū‖ ≤ ν, then

βk+1 = βk.
Else

While rk > ν, do
βk := 3

4βk × min{1, ν/rk},
ū := P�[uk − βkuk],
rk := βk‖F(uk) − F(ū)‖/‖uk − ū‖.

End While
βk+1 = βk.

End If

Step 5 Searching step size α∗
k :

Let ᾱk = arg max
α

{�(α) | α ≥ 0},
where �(α) is defined by (1.9).
Solve the following optimization problem

α∗
k = arg max

α
{�(α) | 0 ≤ α ≤ m1ᾱk},

where �(α) is defined by (1.8).

Step 6 Extending the step size:
αk = max

α
{α∗

k ≤ α ≤ m2α
∗
k | �(α) ≥ ρ�(α∗

k)}.

Step 7 Correction:
uk+1 = P�[uk − αkβkF(ū)].

Step 8 Adjusting βk+1:
If rk ≤ µ

βk+1 := βk+1ν/rk.
End If
k := k + 1, go to Step 2. 
�

Further, we can obtain the following analytic properties of function �(α).

Proposition 2.3 Assume that �(α) is defined by (1.8), F is monotone and continuously
differentiable, then we have

(1) �′(α) = 2βk(uk+1(α) − ū)TF(ū),
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(2) �′(α) is a decreasing function with respect to α ≥ 0, i.e., when α ≥ 0, �(α) is
concave.
Furthermore, if �′(α∗

1(k)) = 0, we have

(3) ‖uk − u∗‖2 − ‖uk+1(α∗
1(k)) − u∗‖2 ≥ ‖uk − uk+1(α∗

1(k))‖2.

Proof For given βk, uk, ū, F(ū), let

h(α, y) = ‖y − [uk − αβkF(ū)]‖2 − α2β2
k‖F(ū)‖2 − 2αβk(ū − uk)TF(ū). (2.16)

It is easy to see that the solution of the following problem

min
y

{h(α, y)|y ∈ �}

is y∗ = P�[uk − αβkF(ū)]. Substituting y∗ into (2.16) and simplifying it, we have

�(α) = h(α, y)|y=P�[uk−αβkF(ū)],

i.e.,

�(α) = min
y

{h(α, y)|y ∈ �}. (2.17)

Due to the identity (2.17), it follows from Auslender [1] (Chapter 4, Theorem 1.7)
that �(α) is differentiable and its derivative is given by

�′(α) = ∂h(α, y)

∂α
|y=P�[uk−αβkF(ū)]

= 2βk(uk+1(α) − uk + αβkF(ū))TF(ū) − 2αβ2
k‖F(ū)‖2 − 2βk(ū − uk)TF(ū)

= 2βk(uk+1(α) − ū)TF(ū).

Thus, the first conclusion is proved. We now establish the proof of the second assertion.
Let ᾱ > α ≥ 0, we will prove that

�′(ᾱ) ≤ �′(α),

i.e.,

(uk+1(ᾱ) − uk+1(α))TF(ū) ≤ 0. (2.18)

Setting v := uk − ᾱβkF(ū), u := uk+1(α) and v := uk − αβkF(ū), u := uk+1(ᾱ) in the
basic inequality (2.7) of projection mapping, respectively, we have

(uk − ᾱβkF(ū) − uk+1(ᾱ))T(uk+1(α) − uk+1(ᾱ)) ≤ 0, (2.19)

(uk − αβkF(ū) − uk+1(α))T(uk+1(ᾱ) − uk+1(α)) ≤ 0. (2.20)

Adding (2.19) and (2.20), we obtain

(uk+1(ᾱ) − uk+1(α))T{(uk+1(ᾱ) − uk+1(α)) + (ᾱ − α)βkF(ū)} ≤ 0,

i.e.,

‖uk+1(ᾱ) − uk+1(α)‖2 + (ᾱ − α)βk(uk+1(ᾱ) − uk+1(α))TF(ū) ≤ 0.

It follows that

(uk+1(ᾱ) − uk+1(α))TF(ū) ≤ −1
βk(ᾱ − α)

‖uk+1(ᾱ) − uk+1(α)‖2 ≤ 0.
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Fig. 1 Sketch map of the relationship among the three functions: �(α), �(α) and �(α)

Thus, we obtain the inequality (2.18).
Finally, the third part of the proposition is easy to see from the Proposition 2.2 and
the proof is completed. �

Figure 1 intuitively shows the results described in the Propositions 2.1 and 2.3.

3 Numerical experiments

In this section, we present some numerical experiments in the aim of comparing
the improved general extra-gradient method with the original general extra-gradi-
ent method and a variant of the extra-gradient method recently proposed by Wang
et al. [22]. All programs are coded in MATLAB and the programs are run on a IBM
notebook PC R51.

Example 1 In the first test example, we mainly compare the improved general extra-
gradient method with the original general extra-gradient method. We form our test
problem (1.1) by taking

F(u) = D(u) + Mu + q,

where vector D(u) and Mu + q are the nonlinear part and the linear part of F(u),
respectively. We construct the linear part Mu + q similarly as in Harker and Pang [8]
and He et al.[13]. The matrix M = ATA+B, where A is an n×n matrix whose entries
are randomly generated in the interval (−5, +5) and a skew-symmetric matrix B is
generated in the same way. The vector q is generated from a uniform distribution in
the interval (−500, 500) or (−500, 0). In vector D(u), the nonlinear part of F(u), the
components are Dj(u) = aj × arctan(uj) and aj is a random variable in (0, 1). Now,
we solve this problem by improved general extra-gradient method and general extra-
gradient method. Both methods start with β0 = 1, µ = 0.3, ν = 0.9, ε = 10−7 and
with the same initial vector generated randomly in the interval (0, 1). And let γ = 1.8
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Table 1 Numerical results of
example 1 with
q ∈ (−500, 500)

Problem Algorithm 1 Algorithm 2

size No. of Iter. CPU time(s) No. of Iter. CPU time(s)

100 290 0.13 229 0.22
200 403 0.190 339 0.231
300 409 0.291 332 0.32
500 448 1.031 363 1.182
600 391 2.143 294 1.882
700 417 2.714 334 2.463
800 355 3.585 286 3.265
1,000 378 5.838 320 4.967
1,100 438 6.88 351 6.038

Table 2 Numerical results of
example 1 with q ∈ (−500, 0)

Problem Algorithm 1 Algorithm 2

size No. of Iter. CPU time(s) No. of Iter. CPU time(s)

100 534 0.19 461 0.24
200 753 0.401 639 0.45
300 825 0.44 708 0.681
500 1,037 2.414 897 3.064
600 1,000 5.558 859 5.428
700 968 6.399 832 6.159
800 865 8.743 745 8.141
1,000 1,009 15.512 889 14.371
1,100 1,244 19.588 1,056 17.866

in the general extra-gradient method, ρ = 0.05, m1 = 3, m2 = 4 in the improved
general extra-gradient method, respectively. The stopping test is e(uk, 1) ≤ ε.

Tables 1 and 2 report the iteration numbers and CPU time for both methods.
Numerical results show that the improved general extra-gradient method can save
about 12–25 % of the number of iterations. This means that the amount of computing
the value of function F in solving VI(�, F) can be saved about 12–25 % by the new
general extra-gradient method. Saving the amount of computing the value of func-
tion F is very important for some practical problems in which to obtain the value of
function F is not easy, and thus is the main purpose of our algorithm. From Tables 1
and 2, we also see that while the problem size n ≥ 600, the running CPU time can be
saved by the algorithm 2 comparing with Algorithm 1.

Example 2 In this test example, we mainly compare the improved general
extra-gradient method with a variant of the extra-gradient method recently proposed
by Wang et al. [22]. The test problem (1.1) was considered in Sun[21], and Wang et al.
[22] where F(u) = Mu + q, M is a nonsymmetric matrix of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −2
1 4 −2

1
. . .

. . .
. . .

. . . −2
1 4 −2

1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Table 3 Numerical results of
example 2

Problem Number of Iterations

size Algorithm NVE Algorithm 2

10 13 9
50 13 10
100 13 10
200 13 10
500 13 10

Table 4 Numerical results of
example 3

Problem Number of Iterations

size Algorithm NVE Algorithm 2

10 12 8
20 12 8
50 12 8
100 11 8

where q = [−1, −1, · · · , −1]T is a vector. The best numerical results of the algorithm
nVE in Wang et al.[22] is given in Table 3.

Now, we solve this problem by improved general extra-gradient method. As in
paper Wang et al. [22], we start our algorithm with the initial vector u0 = [0, 0, . . . , 0]T ,
and take ‖e(uk, 1)‖2 ≤ n10−14 as the termination criterion, where n is the dimension
of the problem. And let β0 = 1, µ = 0.5, ν = 0.6, ρ = 0.05, m1 = 3, m2 = 4. Table 3
reports the iteration numbers of the improved general extra-gradient method for this
test problem.

Example 3 This example was also considered in Sun [21] and Wang et al. [22], where

F(u) = F1(u) + F2(u),

F1(u) = [f1(u), f2(u), . . . , fn(u)]T ,

F2(u) = Mu + q,

fi(u) = u2
i−1 + u2

i + ui−1ui + uiui+1, i = 1, 2, . . . , n,

u0 = un+1 = 0,

where M and q are the same as those in Example 2. With the same assumption as
Example 2, Table 4 reports the iterations numbers of the improved general extra-
gradient method and the algorithm NVE in Wang et al. [22], respectively.

Compared with a variant of extra-gradient algorithm proposed in Wang et al.[22],
Tables 3 and 4 show that the improved general extra-gradient method also has good
behavior.

4 Conclusions

In this paper, a new strategy based on Proposition 2.1–2.2 for computing step size
in general extra-gradient method for nonlinear monotone variational inequalities
VI(�, F) is introduced. In order to obtain the new step size, the new strategy just
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needs to additionally compute the projections of some vectors on � and doesn’t
need to compute additionally the value of function F. This is very important espe-
cially in some practical problems in which the cost of computing or observing the
value of function F is very expensive and the work of obtaining the projection of
a vector on � is relatively easy. Furthermore, numerical experiments show that the
amount of computing the value of function F in solving VI(�, F) can be saved about
12–25% by the improved general extra-gradient method, thus the new method is more
competitive than the original general extra-gradient method in solving those practical
problems.
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